Compound meTal structures I



Pobieranie 411.97 Kb.
Strona3/4
Data07.05.2016
Rozmiar411.97 Kb.
1   2   3   4



Form of instruction

Number of teaching hours per semester

Number of teaching hours per week

Semester

Form of receiving a credit

for a course

Number of ECTS credits allocated

Full-time studies

6

Lecture

15

1

II

Grade

Class










Laboratory










Seminar










Workshop










Project

15

1

Grade

Part-time studies

Lecture

10

1

II

Grade

Class










Laboratory










Seminar










Workshop










Project

10

1

Grade

course contents:

Lecture


Objectives of the subject "Structural Mechanics". Dynamical degrees of freedom, foundations of Lagrangian mechanics, dynamics of rigid body. Systems with one degree of freedom: free vibrations, resonance, forced vibrations, damping. Systems with n degrees of freedom: mass granulation (non-objective!), example – system with two degrees of freedom, stiffness matrix, damping matrix, Lagrange equations of the second type, free vibrations, eigenvectors, principal variables, eigen-transformation, harmonic and anharmonic forced vibrations, vibrations of trusses, beams and frames. Continuous systems. Longitudinal vibrations: wave equation, d’Alambert solution, the method of separation of variables, transformation relations. Transversal vibrations: eigen-functions, free vibrations, forced vibrations, transformation relations. Method of Finite Elements: equation of motion of a rod element, global equations of motion. Waves in elastic media. Elements of stability analysis of frames. Introduction to the method of limit analysis.

Project


  1. Free and forced vibrations of a beam in bending with a finite number of degrees of freedom.

learning outcomes:
Competence and skill to (i) calculate frequencies of free vibrations (eigen-frequencies) and amplitudes of forced vibrations for systems with a discrete distribution of mass, (ii) understand the damping in such systems, (iii) calculate frequencies of rods and frames in free longitudinal and transversal vibrations understand the damping by means of transformation relations, (iv) analyze vibrations by FEM, (v) find critical loading for frames by means of transformation relations of the method of displacements, (vi) analyze limit states of simple frames.

assessment criteria:

Lecture – to pass the exam.



Classes and Project – to receive a credit for the project and tests.

Recommended reading:



  1. Ciesielski R. i inni; Mechanika budowli – ujecie komputerowe, tom 2, Arkady, Warszawa, 1992.

  2. Nowacki, W.; Mechanika Budowli, PWN, Warszawa, 1974.

  3. Rakowski G., Kacprzyk, Z.; Metoda elementow skonczonych w mechanice konstrukcji, Oficyna Wydawn. Polit. Warsz., Warszawa 1993.

  4. Kucharski T.; Drgania mechaniczne, rozwiazywanie zagadnien z MATHCAD-em, WNT, Warszawa 2004.



optional reading:



  1. Wilmanski, K.; Dynamika budowli – notatki do wykladow, skrypt UZ, http://www.mech-wilmanski.de

Special Foundation Structures

Course code:

C9-15

Type of course:

compulsory

Entry requirements:

Strength of materials, Soil mechanics, Foundation engineering, Computer methods

Language of instruction:

Polish

Director of studies:

Waldemar Szajna, PhD

Name of lecturer:

Waldemar Szajna,



Form of instruction

Number of teaching hours per semester

Number of teaching hours per week

Semester

Form of receiving a credit

for a course

Number of ECTS credits allocated

Full-time studies

2

Lecture

15

1

II

Grade

Class










Laboratory










Seminar










Workshop










Project

15

1

Grade

Part-time studies

Lecture

9

1

III

Grade

Class










Laboratory










Seminar










Workshop










Project

9

1

Grade

course contents:

Behaviour of normally and heavily overconsolidated soils under drained and undrained loadings. Subsoil models. Determination of soil parameters. Calculation methods for foundation settlements on cohesive and noncohesive soils.

Designing of deformable foundation wall footings and slabs. Designing of rigid and deformable pile capping beams. Analysis of cantilever retaining walls. Foundation under water. Sheet pile walls and anchorage. Slurry walls. Deep foundations. Foundation for wind power stations. Foundation on mine areas – directives for designing.

Project: Design of a beams on elastic foundations for a skeletal structure .



learning outcomes:

Skills and competences in: elaboration of a general outline of building foundation

with respect to the building type and soil conditions; theoretical modelling and designing of foundation elements.

assessment criteria:

Lecture – positive grade

Project – positive grade

Recommended reading:


  1. Biernatowski K.: Fundamentowanie, PWN, Warszawa 1984.

  2. Brząkała W. (red.): Fundamentowanie. Przewodnik do projektowania, t. 2. Wyd. Politechniki Wrocławskiej, Wrocław 1989.

  3. Dembicki E. et al.: Fundamentowanie. Projektowanie i wykonawstwo, t.2, Arkady, Warszawa 1988.

  4. Grabowski Z., Pisarczyk S. Obrycki M.: Fundamentowanie, Oficyna Wyd. Politechniki Warszawskiej, Warszawa 1999.

  5. Jarominiak A. et al.: Pale i fundamenty palowe. Arkady, Warszawa 1976.

  6. Rossiński B. et al.: Fundamenty. Projektowanie i wykonawstwo, Arkady, Warszawa 1976.



optional reading:

  1. Bowles J.E.: Foundation analysis and design, McGraw-Hill, N.Y 1988.

  2. Das B.M.: Principles of foundation engineering, PWS Eng., Boston 1984.


Building physics II

Course code:

13.2-WILŚ- BUD- FIZB- KC12

Type of course:

compulsory

Entry requirements:

knowledge of mathematical analysis and vector calculus

Language of instruction:

Polish

Director of studies:

prof. dr habil. K. Wilmanski

Department of Structural Mechanics



Name of lecturer:

prof. dr habil. K. Wilmanski



Form of instruction

Number of teaching hours per semester

Number of teaching hours per week

Semester

Form of receiving a credit

for a course

Number of ECTS credits allocated

Full-time studies

3

Lecture

30

2

II

Exam

Class

15

1

Grade

Laboratory










Seminar










Workshop










Project










Part-time studies

Lecture







II




Class










Laboratory










Seminar










Workshop










Project










course contents:

Lecture


Objectives of the subject "Building Physics II". Foundations of chemical thermodynamics, equilibrium thermodynamics, Gibbs equation, second law of thermodynamics, thermodynamic potentials. Thermodynamics of ideal gases. Mass exchange in multicomponent systems, chemical potential.

Heat: energy balance equation, heat conduction equation, boundary and initial conditions, exact and approximate solutions, stationary solutions. Heat balance. Radiation. Absorption, reflection and conduction of heat. Heat exchange between two parallel planes. Heat conduction in multilayer plane walls. Heat transfer through construction walls. Conduction and absorption coefficients for heat, heat resistance, density of the heat flux, amount of heat, temperature distribution in walls, heat bridges. Thermal stability of rooms.

Humidity: van der Waals gas, equation of state. Phase transitions, condensation and evaporation of water. Diffusion equation. Fick’s law. Saturation pressure, relative humidity, temperature of condensation, diffusive effects. Transport of humidity and heat in construction walls.

Sound: notion of an acoustic wave, monochromatic waves, their characterization. Range of frequencies in civil engineering structures, frequency ranges. Acoustic pressure, intensity, limit values. Boundary conditions for wave equation, impedance, absorption and reflection of sound. Damping of sound.

learning outcomes:
Competence and skill to (i) solve heat conduction equation by means of Fourier method, (ii) determine transfer of heat through convection and radiation, (iii) calculate mass transfer through construction walls, (iv) solve diffusion equation by means of Fourier method, (v) estimate the condensation by Galser method, (vi) estimate time of drying of construction walls, (vii) estimate transfer and damping of sound.

assessment criteria:

Lecture – to pass the exam.

Classes – to receive a credit for tests.

Recommended reading:




  1. Klemm, P. i inni; Budownictwo Ogolne, tom 2: Fizyka budowli, Arkady, Warszawa 2005.

  2. Plonski W., Pogorzelski J. A.; Fizyka budowli, Arkady, Warszawa 1979.

  3. Pogorzelski J. A.; Fizyka cieplna budowli, PWN, Warszawa 1976. optional reading:

  4. Boguslawski W. N.; Fizyka budowli, Arkady, Warszawa, 1975.

  5. Wilmanski K.; Fizyka budowli – notatki do wykladow, skrypt UZ, http://www-mech-wilmanski.de



structural optimization

Course code:

06.4-WILŚ- BUD- OPKO- KC13

Type of course:

optional

Entry requirements:

knowledge of computational methods, strength of materials and structural mechanics

Language of instruction:

Polish

Director of studies:

dr hab. inż. Mieczysław Kuczma prof. UZ Department of Structural Mechanics

Name of lecturer:

dr hab. inż. Mieczysław Kuczma prof. UZ,

prof. dr hab. Inż. Romuald Świtka





Form of instruction

Number of teaching hours per semester

Number of teaching hours per week

Semester

Form of receiving a credit

for a course

Number of ECTS credits allocated

Full-time studies

1

Lecture

15

1

II

Grade

Class










Laboratory










Seminar










Workshop










Project










Part-time studies

Lecture

10

1

II

Grade

Class










Laboratory










Seminar










Workshop










Project










course contents:

Lecture


Foundations of technical design. Measures of reliability and safety of structures. Criteria of structural optimization. Optimal shaping of columns and arches of uniform strength. Linear programming problem (LPP). Dual problem of LPP. Simplex method for LPP. Optimal design of trusses, beams and frames by limit load theory. Quadratic programming problem (QPP). Extremum of a function on a convex set and necessary conditions for an optimal solution. Karush-Kuhn-Tucker conditions for elasto-plastic problems. The method of Lagrange multipliers.
learning outcomes:

Competence and skill to understand and use (i) principles of optimal design of structures, concerning their shape and load carrying capacity, and (ii) methods and algorithms of mathematical optimization for advanced problems in engineering practice.



assessment criteria:

Lecture – to receive a credit for final test.



Recommended reading:

  1. Brandt A.M. (red.), Kryteria i metody optymalizacji konstrukcji. PWN, Warszawa 1977.

  2. Brandt A.M. (red.), Podstawy optymalizacji elementów budowlanych. PWN, Warszawa 1978.

  3. Majid K.I., Optymalne projektowanie konstrukcji. PWN, Warszawa 1981.

  4. Szymczak C., Elementy teorii projektowania. PWN, Warszawa 1998.

  5. Wasiutyński Z., Pisma, tom II: O zagadnieniach optymalizacji konstrukcyj
    i o rozwijaniu tych zagadnień. PWN, Warszawa 1978.

optional reading:

  1. Borkowski A., Statyczna analiza układów prętowych w zakresach sprężystym
    i plastycznym. IPPT PAN, Warszawa – Poznań 1985.

  2. Findeisen W., Szymanowski J., Wierzbicki A., Teoria i metody obliczeniowe optymalizacji. PWN, Warszawa 1980.

  3. Rakowski G., Kacprzyk Z.: Metoda elementów skończonych w mechanice konstrukcji. Wyd. PW, Warszawa 2005.



Industrial Construction

Course code:

06.4-WILŚ- BUD- BPRZ- KC13

Type of course:

Optional

Entry requirements:

Building materials. Strength of materials. Structural mechanics. General Construction, Complex structures and metal, Composite concrete structure I.

Language of instruction:

polish

Director of studies:

Team of Building Structures

dr ing Gerard Bryś



Name of lecturer:

dr ing Gerard Bryś
1   2   3   4


©absta.pl 2016
wyślij wiadomość

    Strona główna