Oxide sub-oxide per-oxide tlenek pod-tlenek nad-tlenek hydroxide

Pobieranie 35.93 Kb.
Rozmiar35.93 Kb.
Zasada tworzenia nazwy związku w języku polskim i w języku angielskim
tlenek węgla  carbon oxide

dwutlenek węgla  carbon dioxide

siarkowodór  hydrogen sulphide
siarczan wapnia  calcium sulphate

oxide sub-oxide per-oxide

tlenek pod-tlenek nad-tlenek

hydroxide  base  basic basicity

wodorotlenek zasada zasadowy zasadowość

podstawa podstawowy alkaliczność

acid  acidic  sour


kwaśny (character i smak)
kwas kwasowy kwaśny




1 – H2 dihydrogen

Hydrogen is the only one element whose isotopes have their own names:

protium (proten) 11H

deuterium (deuter) 21H

tritium (tryt) 31H
hydride ion H- hydride NaH (sodium hydride)

CaH2 (calcium hydride)

proton H+  H2O

(nie występuje w przyrodzie)

2 – helium

0 (18) helowcenoble gasses
3 - lithium  Li+1  lithium (example: lithium oxide)

IA(1) litowce lithium family  alkali metals
4 – beryllium  Be2+  beryllium (example: beryllium hydroxide)

IIA(2) berylowce beryllium family  alkaline earth metals
5 – boron  borate BO3- (oksoboran, d. boran)

 boride B2- (boran d. borek)

IIIA (13) borowce  boron family -
6 – carbon  carbon compounds

hydrocarbons CnHm

carbonium ion R3C+ (sec-; tert-, quat- )

(secondary, tertiary, quaternary )


jon karboniowy, (drugo-, trzecio- czwarto-rzędowy)

carbon dioxide CO2  carbon dioxide snow  carbon dioxide ice

carbonic acid H2CO3

carbonate CO32- (węglan)

sodium carbonate

carbonate (czasownik) karbonizować, przeprowadzać w węglan, nasycać CO2

The solution must be carbonate.

bicarbonate HCO3- (wodorowęglan)

IVA (14) węglowce carbon group, carbon family
7 – nitrogen nitrogen compounds:

nitrogen oxides: nitrous oxide nitrogen monoxide N2O

nitric oxide NO,

nitrogen dioxide  nitrogen peroxide NO2

kwasy nitrous acid HNO2 nitrite (silver nitrite)

nitric acid HNO3 nitrate (zinc nitrate)

fuming nitric acid dymiący kwas azotowy

hydrazoic or azoimide acid HN3 azide

azotowodorowy kwas azydek wodoru azydek
nitride Li3N azotek litu
ammonia NH3 (gaseous, liquid, free)

amoniak (gazowy, ciekły, wolny)

ammonium hydrate  ammonium hydroxide zasada amonowa

ammonium NH4+ amon

ammonium acid carbonate  ammonium bicarbonate kwaśny węglan
VA (15) azotowce nitrogen group, nitrogen family
8 – oxygen O2

ozone O3

oxide oxides

oxo complex oksokompleks

oxonium ion H3O+ jon oksoniowy

oxy-acid kwas tlenowy

przedrostek oxy tłumaczy się jako tlenowy, a, e

VIA (16) tlenowce  oxygen family

9 – fluorine

HF hydrogen fluoride fluoride F-1, sodium fluoride, calcium fluoride etc.

HF  aq. hydrofluoric acid
VIIA (17) fluorowce halogens, halogen group
13 – aluminium

aluminium oxide  alumina

22 titanium(IV) oxide  titania

40 zirconium oxide  zirconia

57 lanthanum oxide  lanthana

12 magnesium oxide  magnesia
11 sodium (mono-, di-)oxide soda soda-lime

techniczny węglan sodu; wapno sodowane(caO + NaOH)

soda lye; soda saltpetre  soda nitre

ług sodowy NaNO3 saletra sodowa, chilijska

AlO2+ aluminate; potassium aluminate glinian
Al2O3  SiO2 aluminosilicate glinokrzemian

amorphous aluminosilicate glinokrzemian amorficzny

crystalline aluminosilicate glinokrzemian krystaliczny

zeolite (min.) zeolit

zeolite 4A, X, Y, zeolite 4A, X, Y

mordenite mordenit

ferrierite ferieryt

15 – phosphorus

PH3 phosphine phosphide fosforek

PH4+ phosphonium jon fosfoniowy

H3PO3 phosphorous acid phosphite fosforyn

H3PO4 phosphoric acid (in general) phosphate fosforan, orto fosforan

PO3 phosphoric anhydrite

phosphate rock (min.) fosfaryt, odmiana apatytu calcium phosphate

phosphatic fertilizers

phosphor bronze (met.) brąz fosforowy

16 - sulphur

H2S hydrogen sulphide sulphide siarczek

SO2 sulphur dioxide (anhydride) H2SO3 sulphurous acid sulphite

SO3 sulphur trioxide (anhydride) H2SO4 sulphuric acid sulphate

RSO3H sulphonic acid sulphonate

kwas sulfonowy sulfonian

RCSOH; RCOSH thioacid tiokwas

 S  thio- tio

17 – chlorine

HCl hydrogen chloride

HCl  aq. hydrochloric acid Cl- chloride ion ferric chloride, ferrous chloride

muriatic acid

HClO (I) hypochlorous acid hypochlorite kwas podchlorawy; podchloryny

HClO2 (III) chlorous acid chlorite kwas chlorawy; chloryny

HClO3 (V) chloric acid chlorate kwas chlorowy; chlorany

HClO4 (VII) perchloric acid perchlorate kwas nadchlorowy; nadchlorany

H2PtIICl4 chloroplatinous acid chloroplatinite

H2PtIVCl6 chloroplatinic acid chloroplatinate

cobaltic oxide cobaltous oxide cobalto-cobaltic oxide kobaltawo-kobaltowy

ferric ferrous ferro(so)-ferric

nickelic nickel(ous)

50 – Sn tin

stannic compounds związki cynowe


82 – Pb

lead dioxide  lead peroxide  lead superoxide tlenek ołowiowy

lead monoxide ołowiawy

lead sesquioxide ołowiowo-ołowiawy

metale przejściowe  transition metals

tlenki azotu  nitrogen oxides

tlenki lantanowców  rare earths

tlenki wapniowców  alkaline earths

oxidation, oxidizing  oxidate; oxidize  oxidation agent

reduction  reduce  reducing agent = czynnik redukujący

reducing valve = zawór redukujący
catalysis  catalyse  catalyst
homogenous mixture catalysis


A cation, pronounced cat’-ion, is a positive ion.

An anion, pronounced an’-ion, is a negative ion.

Metals tend to react with nonmetals to form ionic compounds.

  • The positive ion is always written first in the formula.

  • The ratio of positive ions to negative ions must be such that the total number of positive charges equals the total number of negative charges; the formula unit must be electrically neutral.

  • The smallest set of subscripts that give electrical neutrality is always chosen. We always write empirical formulas for ionic compounds.

Methods of preparation and characterization of catalysts.
The -Al2O3 was prepared by precipitation of Al(OH)3 from an AlCl3 1M solution by an NH3 1M solution. The precipitate was washed for removing NH4+ and Cl- repetitively until they could not be detected, left at a temperature of 40oC for 5h to remove free H2O and then calcined at 600oC for 8 h. The -Al2O3 + MgO (1% w/w) was prepared by coprecipitation of Al(OH)3 and Mg(OH)2 from a mixture of AlCl3 1M and MgCl2 1 M solutions at appropriate proportion by Nh3 1M followed by the same remaining procedure. After calcining. the materials were grinded, sieved and the particle size fraction 25-75 m was obtained. Oxides were characterized by dissolving an amount of doped one in HCl solution which was analysed by the atomic absorption technique to determine its true composition and by XRD and BET. Cylindrical pressed powder tablets, 10 mm in diameter and 1.6 mm thick, were examined by impedance spectroscopy to examine the conductive behaviour of aluminas.

©absta.pl 2016
wyślij wiadomość

    Strona główna