Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych



Pobieranie 60.53 Kb.
Data10.05.2016
Rozmiar60.53 Kb.


Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych

Nr 63

Politechniki Wrocławskiej

Nr 63

Studia i Materiały

Nr 29

2009







przyrządy wirtualne, subVI

Daniel DUSZA*, Jerzy BARTOSZEWSKI



METODYKA PROJEKTOWANIA PRZYRZĄDÓW WIRTUALNYCH

Przyrządy wirtualne, jako narzędzie współczesnej metrologii, są już obecne w każdej gałęzi przemysłu. Różne podejścia do projektowania przyrządów wirtualnych wymagają usystematyzowania podejmowanych działań. W niniejszej pracy autorzy prezentują próbę opracowania ogólnej metodyki projektowania przyrządów wirtualnych.

1. WSTĘP

Współczesny przemysł, wspomagany szybko rozwijającą się techniką, stawia coraz większe wymagania wydajnościowe i jakościowe systemom kontrolno-pomiarowym. Odpowiedzią na takie zapotrzebowanie są coraz nowsze rozwiązania cechujące się stale rosnącą dokładnością, przy jednoczesnym zwiększaniu szybkości działania systemów pomiarowych. Wymaga to między innymi nieustannego postępu w dziedzinie przyrządów pomiarowych. Najnowszym osiągnięciem w tej kategorii są wirtualne przyrządy pomiarowe, których główną zaletą jest możliwość zmiany nie tylko poszczególnych funkcji kontrolno-pomiarowych, ale również modyfikacji sprzętowych przeprowadzanych bez konieczności zmiany całości oprogramowania.


W związku z aktualnie obserwowanym dynamicznym rozwojem technologii przyrządów wirtualnych, stale poszerza się liczba zagadnień związanych z różnymi jej aspektami. Powoduje to konieczność wprowadzania pewnych uogólnień, podziałów na kategorie oraz uporządkowania posiadanej wiedzy. W artykule podjęto próbę opracowania ogólnej metodyki projektowania wirtualnych przyrządów pomiarowych na podstawie analizy dostępnych materiałów oraz własnych doświadczeń i przemyśleń.

2. KLASYFIKACJA WIRTUALNYCH PRZYRZĄDÓW POMIAROWYCH

Zgodnie z definicją zawartą w [2]: Przyrząd wirtualny jest rodzajem inteligentnego przyrządu pomiarowego, powstałego w wyniku sprzężenia pewnego sprzętu nowej generacji z komputerem osobistym ogólnego przeznaczenia i przyjaznym dla użytkownika oprogramowaniem, które umożliwia użytkownikowi współpracę z komputerem na zasadach takich, jakby obsługiwał tradycyjny przyrząd pomiarowy”.
Ze względu na dość szerokie pojęcie takiego przyrządu, niezbędna okazała się klasyfikacja na trzy podstawowe grupy:


  1. przyrządy fizyczne, wyposażone w interfejs pomiarowy i komunikujące się z użytkownikiem za pomocą panelu graficznego na monitorze komputera,

  2. karty pomiarowe DAQ lub specjalne moduły, np. PXI, połączone z komputerem - komunikacja odbywa się poprzez panel graficzny na monitorze,

  3. przyrządy programowe (brak fizycznego urządzenia) z danymi wejściowymi pobieranymi z plików komputera - komunikacja odbywa się poprzez panel graficzny na monitorze.

Zastosowanie przyrządów wirtualnych pozwala na wprowadzanie dowolnych modyfikacji i innowacji w warstwie programowej przyrządu, co zdecydowanie zwiększa jego potencjalne możliwości. Dzięki otwartej architekturze możliwe jest szerokie wykorzystanie funkcji jednostki centralnej, będącej platformą dla przyrządu. Z uwagi, że znaczącym elementem przyrządu wirtualnego jest jego część programowa, łatwe jest jego przystosowanie do współpracy z różnego rodzaju sprzętem.

Przy wykorzystaniu układów akwizycji danych pomiarowych istnieje możliwość budowy różnorodnych przyrządów wirtualnych ogólnego przeznaczenia, a także specjalizowanych, przystosowanych do określonego zastosowania. Pierwsze przyrządy wirtualne powstawały w oparciu o języki niskiego poziomu typu np. Turbo Pascal czy C, co wiązało się z czasochłonnym i żmudnym procesem tworzenia aplikacji.


W ostatnich latach powstało wiele rozbudowanych graficznych środowisk programistycznych, dedykowanych między innymi do budowy przyrządów wirtualnych. Najpopularniejsze z nich to LabVIEW, Measurement Studio oraz Agilent VEE. Środowiska te znacznie usprawniły proces tworzenia przyrządu, umożliwiając zastępowanie całych grup instrukcji pojedynczym elementem z biblioteki. Niezwykle ważnym zagadnieniem, towarzyszącym każdemu systemowi pomiarowemu, jest dobór odpowiedniego interfejsu. Na przestrzeni lat zostało rozwiniętych wiele konkurencyjnych standardów, spośród których największy sukces odniosły: GPIB (General Purpose Interface Bus), VXI (VMEbus eXtentions for Instrumentation), PXI (PCI eXtensions for Instrumentation), USB (Universal Serial Bus) oraz LAN (Local Area Network). Standard PXI jako nowa, ulepszona wersja VXI, stanowi w pełni funkcjonalny, zintegrowany system pomiarowy, obecnie najchętniej wykorzystywany w rozwiązaniach przemysłowych i badaniach naukowych. Jego modułowa postać pozwala na bezproblemowe połączenie w jednym układzie, wydajnego komputera oraz wielu torów wejść/wyjść, umożliwiających współpracę z różnorodnymi urządzeniami systemu pomiarowego. Interfejs GPIB, na skutek dynamicznego rozwoju technologii komputerowej, został praktycznie wyparty przez dużo tańsze rozwiązania, jakimi są standardy USB oraz LAN.

Rosnące zapotrzebowanie na dokładność i funkcjonalność systemów pomiarowych spowodowało w ostatnich latach dynamiczny rozwój przyrządów wirtualnych jako najtańszego i najbardziej opłacalnego rozwiązania. Znacznie większa uniwersalność, w porównaniu do przyrządów tradycyjnych oraz łatwość dostosowania do potrzeb użytkownika przyczyniły się do stale zwiększającego się udziału VI (Virtual Instrument) w różnych gałęziach przemysłu. Możliwości wiążące się z wykorzystaniem tego rodzaju rozwiązań można znaleźć w licznej dostępnej literaturze czego przykładem może być sterowanie procesem gięcia szyb [4], system testowania wind kopalnianych [5] czy też wirtualny oscyloskop opisany w pracy [3].

3. P ROJEKT PRZYRZĄDU WIRTUALNEGO

W ramach pracy dla określenia ogólnych zasad konstruowania przyrządów wirtualnych, zaprojektowany został przykładowy przyrząd do badania podstawowych parametrów wzmacniaczy operacyjnych. Układ pomiarowy umożliwia prawidłowe przeprowadzenie pomiarów dla wzmacniaczy o określonych wejściach i wyjściach. Schemat ideowy układu, w skład którego wchodzi karta pomiarowa, dwa zasilacze, generator oraz obiekt pomiaru, przedstawiono na rysunku 1. Występujący na schemacie komutator, sterowany z wyjścia cyfrowego karty pomiarowej, zapewnia przełączanie napięcia z zasilacza na przeciwną biegunowość umożliwiając wyznaczenie charakterystyki pasmowej dla napięcia stałego w pełnym zakresie pracy układu.

Zapewnienie prawidłowej pracy całego przyrządu wymaga zaprojektowania odpowiedniego programu, kontrolującego i koordynującego działanie zespołu urządzeń wchodzących w skład układu pomiarowego. Zadanie oprogramowania obejmuje zarówno część sterującą, pozwalającą na zautomatyzowanie procesu pomiarowego jak i część odpowiedzialną za akwizycję i przetwarzanie sygnałów dostarczanych do karty pomiarowej.


Rys. 1. Schemat ideowy zaprojektowanego układu pomiarowego
Fig. 1. Designed measurement circuit scheme

Panel czołowy programu głównego podzielono na cztery zakładki, odpowiadające określonym funkcjom realizowanym przez przyrząd. Pierwsza zakładka pozwala na zbadanie charakterystyki przejściowej badanego wzmacniacza operacyjnego wraz


z automatycznym wyznaczeniem wartości wzmocnienia oraz wejściowego napięcia niezrównoważenia. Druga zakładka panelu czołowego przyrządu skupia funkcje służące do wyznaczania charakterystyki amplitudowej wzmacniacza operacyjnego przy wykorzystaniu napięcia zmiennego podawanego z generatora (rys. 1). Ponadto, dla częstotliwości środkowej wzmacniacza, wyznaczana jest jego charakterystyka pasmowa, również z wykorzystaniem generatora jako źródła sygnału wejściowego. Trzecia zakładka panelu czołowego przyrządu przeznaczona jest do badania wpływu zmian częstotliwości napięcia wejściowego wzmacniacza operacyjnego na amplitudę jego napięcia wyjściowego. Ostatnia zakładka panelu czołowego umożliwia przeprowadzenie analizy metrologicznej wyników pomiarów wykonanych przy zastosowaniu przyrządu wirtualnego. Po ustaleniu przez użytkownika parametrów wejściowych, program automatycznie wyznacza wartości niepewności typu A oraz B, a także niepewność łączną standardową i rozszerzoną.

Ze względu na tematykę artykułu ograniczono się tylko do opisania pierwszej zakładki programu. Widok tej części panelu przedstawia rysunek 2.



Rys. 2. Panel czołowy – wyznaczanie charakterystyki przejściowej wzmacniacza


Fig. 2. Front panel – determination of amplifier transient characteristic

Na panelu wyświetlane są aktualne w danej chwili wartości napięcia oraz prądu pobieranego z zasilacza. Po zakończeniu danej sesji pomiarowej program automatycznie wyznacza wartość wzmocnienia badanego wzmacniacza na podstawie liniowej części uzyskanej charakterystyki i wyświetla ją w odpowiednim miejscu na ekranie. Również po wykonaniu pomiarów wyznaczana jest wartość napięcia niezrównoważenia badanego wzmacniacza. Algorytm działania tej części programu pokazano na rysunku 3. Prezentowany algorytm zawiera w sobie dwa podprogramy: zasilacz.vi, którego zasadniczą rolą jest wyznaczenie i regulacja wartości napięcia według zadanych nastaw i wyznaczenie charakterystyki przejściowej badanego wzmacniacza oraz podprogram odczyt.vi , który realizuje operacje na plikach i wybiera odpowiednie elementy z prostoliniowej części wyznaczonej charakterystyki. Realizacja odpowiedniej struktury programu głównego, polegająca na wyodrębnieniu podprogramów, daje możliwość wykorzystania poszczególnych podprogramów również w innych projektach.

W celu zaprezentowania sposobu działania opisywanej części przyrządu wykonano serię pomiarów dla wzmacniacza operacyjnego AD708JN, przy różnych krokach próbkowania. We wszystkich przypadkach otrzymano wartość wzmocnienia V/V oraz wartość napięcia niezrównoważenia V. Uzyskane wyniki są zgodne z wartościami oczekiwanymi wynikającymi z fizycznych właściwości badanego układu [7]. Dodatkowo sprawdzono wpływ napięciowego kroku próbkowania na dokładność wyznaczania szerokości liniowego przedziału pracy wzmacniacza – wyniki pomiarów zawarto w tabeli 1.

Rys. 3. Panel czołowy, wyznaczanie charakterystyki pasmowej wzmacniacza.


Algorytm działania programu
Fig. 3. Front panel, determination of amplifier transient characteristic. Program working algorithm

Tab. 1. Wyznaczanie dolnej granicy liniowego przedziału pracy badanego wzmacniacza


Tab. 1. Bottom limit of tested amplifier linear work range determination

Krok próbkowania [V]

Uwe [V]

Uwy [V]

ΔUwe [V]

Ilość próbek

0,1

-7,3926

14,0723

0

202

0,2

-7,3926

14,0723

0

102

0,5

-7,4902

14,0723

-0,0976

42

1

-7,9883

14,0723

-0,5957

22

2

-7,9932

14,0723

-0,6006

12

W powyższej tabeli zamieszczono, dla poszczególnych kroków próbkowania, wartości napięcia wejściowego Uwe zmierzone w punktach początkowych stanu nasycenia oraz odpowiadające im wartości napięcia wyjściowego Uwy . Jako wartość odniesienia dolnej granicy pasma przenoszenia przyjęto graniczne napięcie wejściowe przy kroku próbkowania 0,1 V. Niedokładność wyznaczenia poszukiwanego punktu ΔUwe obliczono zatem, dla każdego przypadku, jako różnicę granicznej wartości napięcia wejściowego i wartości odniesienia. Przykładowo przy kroku 0,5 V, w wyniku wygenerowania 42 próbek wyznaczono punkt graniczny stanu nasycenia wzmacniacza


z niepewnością 1,3 %. Przyjęcie kroku 1 V powoduje otrzymanie wyniku z niepewnością 8 %, co przekracza akceptowalną niedokładność. Jak wynika z tabeli 1, optymalna wartość kroku próbkowania dla zastosowanego wzmacniacza wynosi 0,5 V. Pozwala to, na podstawie danych pomiarowych zapisanych do pliku, wyznaczyć pasmo przenoszenia wzmacniacza z wystarczająco dużą dokładnością, w stosunkowo krótkim czasie, szacowanym na podstawie liczby próbek pomiarowych niezbędnych do wygenerowania charakterystyki. Na rysunku 4 pokazano przykładową charakterystykę pasmową, wyznaczoną dla badanego wzmacniacza, przy kroku próbkowania równym 0,5 V. W lewym dolnym rogu wykresu zamieszczono powiększony fragment charakterystyki, obejmujący moment wejścia układu w nasycenie, otrzymany dla trzech różnych kroków próbkowania. Dokładność wyznaczania przebiegu maleje
w miarę zwiększania kroku. Związane jest to z różną gęstością rozmieszczenia punktów pomiarowych, między którymi charakterystyka zostaje aproksymowana funkcją liniową.

Rys.4. Charakterystyka pasmowa badanego wzmacniacza


Fig. 4. Tested amplifier pass band characteristic

4. METODYKA PROJEKTOWANIA PRZYRZĄDÓW WIRTUALNYCH

Proces projektowania wirtualnego przyrządu pomiarowego można podzielić na kilka etapów, w których realizowane są kolejne zadania związane z poszczególnymi warstwami projektu. W opisywanym przypadku wyróżniono trzy podstawowe grupy działań, dotyczące części obiektowej przyrządu, jego części programowej oraz weryfikacji jego działania.

4.1. CZĘŚĆ OBIEKTOWA



Identyfikacja obiektu pomiaru oraz jego istotnych parametrów

Pierwszym zadaniem stojącym przed projektantem nowego przyrządu wirtualnego, lub wirtualnego systemu pomiarowego, jest identyfikacja obiektu pomiaru oraz określenie istotnych parametrów jakie go charakteryzują. Istotne jest także wskazanie czynników otoczenia obiektu pomiarowego, które mogą mieć wpływ na wyniki prowadzonych badań. Spośród dostępnych parametrów należy następnie wybrać do pomiarów te, które zawierają pożądane informacje o zmianach zachodzących w badanym obiekcie. Na tym etapie projektowania powinien zostać określony pierwszy zarys układu pomiarowego uwzględniający czujniki, przyrządy pomiarowe, źródła sygnałów kontrolno-pomiarowych oraz, dobrane odpowiednio do zadania, karty pomiarowe z układami kondycjonowania sygnałów.


Dobór metod pomiarowych

Kolejnym, bardzo ważnym krokiem w realizacji projektu, jest dobór odpowiednich metod pomiarowych. W pracy [1] przedstawiono cztery podstawowe rodzaje podziału metod pomiarowych:



  1. ze względu na otrzymywanie wyniku pomiaru - określa stopień złożoności przeprowadzanych obliczeń w celu otrzymywania wyników pomiarów,

  2. ze względu na sposób porównania mierzonych wielkości - informuje o długości łańcucha pomiarowego,

  3. ze względu na zasadę porównania mierzonych wielkości - pozwala rozróżnić metody według dokładności pomiaru,

  4. ze względu na technikę porównania mierzonych wielkości - rozróżnia uzupełniające metody pomiarowe.

Według autora tej klasyfikacji umożliwia ona stosowanie inżynierii metod pomiarowych, tzn. pozwala na dokonanie wyboru metody pomiarowej lub metod pomiarowych, zapewniających mierzenie badanej wielkości z wymaganą dokładnością.
Projekt i realizacja układu pomiarowego

Po zgromadzeniu wymaganych informacji należy przystąpić do zaprojektowania


i realizacji układu pomiarowego. Bardzo ważny na tym etapie jest odpowiedni dobór elementów składowych, w celu zapewnienia wymaganej funkcjonalności i wydajności całego układu. Wśród stosowanych urządzeń należy w pierwszej kolejności wymienić przyrządy pomiarowe z interfejsami pomiarowymi oraz karty pomiarowe z jednostką centralną (kontrolerem). Niezbędne w większości przypadków jest zastosowanie czujników, lub przetworników pomiarowych, służących do badania wybranych parametrów obiektu oraz jego otoczenia i przetwarzania ich na sygnał elektryczny. W celu zapewnienia kompatybilności między urządzeniami składowymi układu często stosuje się kondycjonery, odpowiedzialne za dostarczenie informacji pomiarowej o akceptowalnych poziomach mierzonych sygnałów. W wielu przypadkach konieczne jest stosowanie różnego rodzaju źródeł sygnałów, dzięki którym możliwa jest obserwacja odpowiedzi badanego obiektu na zadane wymuszenie. Na rysunku 5 przedstawiono ogólną strukturę układu pomiarowego w formie schematu ideowego [2]. Strzałki symbolizują kierunek przepływu informacji pomiarowych i sterujących
w układzie.

Rys. 5. Ogólna struktura układu pomiarowego


Fig. 5. Measurement circuit general structure

Zachodzi również możliwość zastąpienia grupy pojedynczych urządzeń zintegrowanym, przemysłowym systemem pomiarowym, zrealizowanym np. w standardzie PXI. Rozwiązanie takie niesie ze sobą szereg udogodnień, przez co jest obecnie coraz chętniej stosowane.

4.2. CZĘŚĆ PROGRAMOWA

Opracowanie algorytmu pracy programu

Po zbudowaniu fizycznej części układu pomiarowego konieczne jest opracowanie oprogramowania, które będzie realizować funkcje sterujące i pomiarowe, a także koordynować pracę zespołu urządzeń składowych układu. Podstawową czynnością przy tworzeniu każdego programu komputerowego jest zaprojektowanie ogólnego algorytmu, według którego wykonywane będą główne zadania.


Wydzielenie i realizacja podprogramów

Struktura typowego oprogramowania przyrządu wirtualnego wymaga podziału na mniejsze zespoły operacji, tzw. podprogramy oraz zdefiniowania szeregu wzajemnych powiązań między nimi. Jest to spowodowane koniecznością zachowania przejrzystości struktury programu, przy równoczesnej znacznej złożoności większości procesów pomiarowych. Podejście takie pozwala również na realizację pojedynczych podprogramów jako osobnych zadań, co jest dużo wygodniejsze ze względu na możliwość bieżącego testowania poszczególnych części algorytmu. Ponadto, jako niezależne aplikacje, mogą być swobodnie wykorzystywane w innych projektach.

Budowę podprogramu należy zacząć od wyboru odpowiednich sterowników, wydanych przez producenta danego sprzętu. Pozwalają one na znaczne uproszczenie większości zadań związanych z obsługą urządzenia, gdyż realizacja danej operacji sprowadza się do odpowiedniego skonfigurowania gotowego zestawu podprogramów. Bardziej zaawansowane procedury, niedostępne z poziomu sterowników, wymagają zastosowania elementów VISA oraz języka SCPI, pozwalającego wydawać elementarne komendy w formie poleceń tekstowych. Gotowy podprogram powinien umożliwiać łatwą rekonfigurację parametrów pracy oraz rozbudowę o dodatkowe funkcje.
Interfejs do komunikacji z użytkownikiem

Gdy przyrząd jest już w pełni funkcjonalny i pozwala na uzyskanie pożądanych rezultatów, kolejnym etapem jest opracowanie interfejsu, służącego do komunikacji


z użytkownikiem. Rozmieszczenie na panelu czołowym odpowiednich elementów, służących do sterowania, sygnalizacji oraz wizualizacji przebiegu procesu pomiarowego i jego rezultatów, powinno zapewniać wygodną obsługę, spełniać wymogi funkcjonalne i estetyczne. Oznacza to, że dostęp do informacji szczegółowych powinien być zachowany w wydzielonym miejscu interfejsu lub pozostać ukrytym.

4.2. CZĘŚĆ WERYFIKACYJNA



Wzorcowanie

Niezbędną procedurą po skonstruowaniu przyrządu wirtualnego jest jego wzorcowanie, polegające na weryfikacji wszystkich wskazań i ewentualnym skorygowaniu niezgodności. Proces ten może być zrealizowany z wykorzystaniem przyrządu wzorcowego metodą porównania wskazań lub też metodą badania odpowiedzi przyrządu wirtualnego na sygnał wzorcowy. W obydwu przypadkach klasę niedokładności zbudowanego przyrządu można określić za pomocą równania (1)


, (1)

w którym: – wartość zmierzona przyrządem wzorcowanym (wirtualnym),



– wartość zmierzona przyrządem wzorcowym, lub wartość sygnału

wzorcowego,



– zakres pomiarowy przyrządu wzorcowanego (wirtualnego).
Jeżeli wyznaczona dokładność przyrządu wzorcowanego jest niezadowalająca, należy podjąć odpowiednie kroki w celu jej poprawy m.in. poprzez zmianę zakresu stosowanej karty pomiarowej przy pomocy kondycjonerów, bądź wymianę części urządzeń składowych układu pomiarowego.
Sporządzenie dokumentacji

Ostatnim krokiem przy projektowaniu wirtualnego przyrządu pomiarowego jest sporządzenie wyczerpującej dokumentacji. Zgodnie z dyrektywą [6] powinna się ona składać z następujących pozycji:



  • dokumentacji fabrycznej wraz z instrukcją obsługi i eksploatacji,

  • świadectwa wzorcowania,

  • dokumentacji użytkowania przyrządu.

Bardzo ważnym jest aby instrukcja obsługi i eksploatacji przyrządu była bezpośrednio dostępna dla każdego użytkownika. W tym celu dokonuje się integracji jej wersji elektronicznej z oprogramowaniem przyrządu.

5. WNIOSKI

Zamiana dotychczasowych systemów kontrolno-pomiarowych na nowoczesne, oparte o technikę przyrządów wirtualnych, skutkuje poprawą wydajności, funkcjonalności oraz obniżeniem kosztów eksploatacji przy zachowaniu dokładności ich działania. Dokładność przyrządów wirtualnych uwarunkowana jest parametrami zastosowanych urządzeń składowych danego układu lub systemu pomiarowego. Współczesny sprzęt komputerowy dysponuje bardzo dużą siłą obliczeniową, co w wielu przypadkach pozwala pomijać wpływ niedokładności związany z jednostką centralną. Ewentualne zastąpienie części urządzeń systemu odpowiednikami o większych możliwościach, wymaga wymiany jedynie niewielkiej części oprogramowania odpowiedzialnej za prawidłową konfigurację nowego hardware’u, np. specjalizowanych kart pomiarowych.

Opracowana metodyka stanowi opis kolejnych etapów projektowania dowolnego rodzaju przyrządu wirtualnego. Postępowanie zgodne z przedstawionymi zasadami powinno w ogólnym przypadku zapewnić poprawną realizację w pełni funkcjonalnego układu kontrolno-pomiarowego w formie przyrządu wirtualnego. Metodyki projektowania określonego przyrządu wymaga zawsze uściślenia ogólnych zasad przedstawionych przez autorów, ze względu na indywidualizm konstrukcji każdego przyrządu.

Ze względu na stale postępujący, dynamiczny rozwój w tej dziedzinie, należy poszukiwać optymalnych rozwiązań konstrukcyjnych, głównie w obszarze oprogramowania, w celu dostosowania realizowanego projektu do aktualnych warunków i możliwości technicznych.

LITERATURA



  1. Nawrocki Z., Metody pomiarowe – inżynieria metod pomiarowych, Artykuł dyskusyjny,
    Normalizacja 6/1993,

  2. Rak R. J., Wirtualny przyrząd pomiarowy, realne narzędzie współczesnej metrologii, OW Politechniki Warszawskiej, Warszawa 2003,

  3. Rana K., Khan S., A DAQ card based mixed signal virtual oscilloscope, Measurement 41 (2008), pp. 1032-1039,

  4. Rząsa M., Zastosowanie pakietu LabVIEW do sterowania procesem gięcia szyb, Pomiary Automatyka Robotyka 4/2006,

  5. Wang G., Wang Q., Li J., Wei J., Mine Elevator Comprehensive Performance Testing System Based on Virtual Instrument, Industrial Electronics and Applications, 2008. ICIEA 2008. 3rd IEEE Conference on 3-5 June 2008,

  6. Dyrektywa 2004/22/WE Parlamentu Europejskiego i Rady z dn. 31 marca 2004 r.
    w sprawie przyrządów pomiarowych,

  7. http://www.analog.com, AD708 Ultralow Offset Voltage Dual Op Amp, Data Sheet Rev C, 02/2006.

VIRTUAL INSTRUMENTS CONSTRUCTING METHODOLOGY

Virtual Instruments, as modern metrology instrument, are present today in every industry branch. Different attitude to virtual instruments constructing require to take systematize effects. In the paper authors presented attempt at working out of general virtual instruments constructing methodology.



 Politechnika Wrocławska, Instytut Maszyn, Napędów I Pomiarów Elektrycznych, ul. Wybrzeże Wyspiańskiego 27, 50-372 Wrocław, daniel.dusza@pwr.wroc.pl, jerzy.bartoszewski@pwr.wroc.pl






©absta.pl 2019
wyślij wiadomość

    Strona główna